
EAP Robot

(MCEN 4228 - 5228 Spring 2024)

Chammy The Robot Chameleon

Team Members: Allister Sequeira - Ely Toledo - Preston Brumley - Whit Whittall -
Nick McConnell

Page 1 of 24

I. Introduction
The EAP (excellent autonomous pet) involved a seamless integration between lidar,

vision, and movement. The objective was to utilize ROS (robotic operating system) to create a
functional robot that was able to navigate and pick up objects autonomously. The lidar provided
sensing for the SLAM application to generate a live map of the area, while the vision system
would identify and guide the robot to the predetermined object.

The robot outlined within this design report is designed to interact with objects and
retrieve them while being able to navigate any area autonomously. This EAP robot performs the
required utilization of vision and lidar integrated in ROS to move about and function properly.

II. Technical Approach
The technical approach encompasses the design requirements outlined by the provided

documentation. These requirements are derived from what we as a class envision a functioning
autonomous pet will be able to perform. The intent is to create a unique challenge for the
mechatronic system to compete in. All design requirements are outlined in the competition
documents [1].

A. Design Requirements:
The EAP should be autonomous and mobile. The speed and how it utilizes the

locomotion is up to the teams decision, but it must navigate a small open area. It is not allowed
to be tethered to a stationary object however it can utilize a “leash” as part of the user interface.

For this project, the budget for the EAP must be under $250. This budget is for all aspects
of the project including: drive system, chassis material, additional motors, interfaces, and other
accessories. Components resourced for free are considered free for budget purposes and lidar,
depth camera, and lipos provided by the class do not affect the overall budget.

The design and functionality is left open depending on what each team wishes to pursue
for their EAP. They can focus on the user interface and personal interaction, mobility and
manipulation systems, or try to achieve a good balance. Possible functions include quadrupedal
locomotion, responding to verbal commands or hand signals, reacting to the facial expression of
its guardian, following its guardian around, playing fetch, navigating an agility course, or
anything else that is important to the experience with the designed EAP.

Page 2 of 24

III. Design Approach
In order to produce a functioning EAP, several factors must be considered. Knowing it

was not feasible to include all EAP functionality within a short timeline, it was essential to
determine what functionality did we want our EAP to have. After brainstorming, it was decided
to pursue the design and functionality of a chameleon, as seen in Figure 1. The main component
that was identified as essential was utilizing the lidar sensor for navigation. Using the lidar would
allow us to have a dedicated sensor to navigate while we could implement other smaller modules
for functionality. While the depth camera provided would also allow for navigating around, the
lidar provides 360 degrees of sensing which we could use to produce a map of the area.

The next major function we wanted the chameleon to possess was the ability to locate an
object and pick it up with its “tongue”. This would require utilizing a camera to identify the
predetermined objects and navigate the robot to them. Then with the tongue we would be able to
pick it up and bring it back to the user. The tongue feature would be a claw that extends out to
grasp hold of the object.

Additionally, with chameleons having the unique ability to change color depending on
their surface, we designed the chameleon to do the same. Attaching color sensors under the
chassis of the robot, it could identify the color of the surface and relay that information to led
strips on the robot. The shell of the robot would be made of opaque material that would help
diffuse the color evenly while adding the chameleon aesthetic.

Finally, the tail of the chameleon would be constructed of linkages so we could use a
servo and a tensioner to contract and retract the tail. This would add a more animal characteristic
to the chameleon, making it feel more realistic.

Page 3 of 24

Figure 1 – Initial Concept Sketch

V. Design
A. Electronics

The electronics used in this design consist of: RaspberryPi 4, Arduino Nano, lidar sensor,
USB camera, brushless DC motors with encoders, a motor driver, and a voltage regulator. The
RaspberryPi was imaged with Ubuntu code and was written in conjunction with ROS application
requirements. The Arduinos were utilized by writing code in the Arduino IDE and were used to
drive the motors which utilized the h-bridges for direction control. The system was powered with
a lipo battery utilizing a voltage regulator to ensure proper operating voltage of the arduino and
raspberry pi.

Page 4 of 24

Figure 2 – Simplified Electrical System Schematic

1) Lidar:
In order to facilitate gridSLAM and pathfinding algorithms so the robot could avoid

obstacles and track its position accurately, we included an RPLidar A1M8 2D lidar sensor
onboard our robot. This lidar communicates and receives power over a USB serial interface and
can be driven with an open-source ROS driver node provided by Slamtec. These traits simplified
integration of the lidar and allowed our team to focus our efforts on implementing SLAM and
other more challenging systems on the bot.

2) Microcontrollers:
The raspberry pi was used for its ability to image and run the ubuntu software. This was

the primary means of operating the ROS program and nodes that integrated the subsystems. The
raspberry pi was powered using the 11.1V lipo battery that ran through a 5V voltage regulator.

Page 5 of 24

The arduino, lidar, and camera were plugged into the pi using the USB ports on the side of the
device. This allows the devices to power themselves and communicate with the raspberry pi
simultaneously.

The Arduino was used by the ROS program to control the drive system of the robot. It
took communications through the raspberry pi and used arduino IDE code and the L298N motor
controller to properly generate the robots motion. Encoder motors were used to theoretically PID
control the robots range of motion. This PID control was under a closed loop control where
ROS2 control would read and write data to the EAP robot without any external influence. The
read data was the encoder motor output and positions and the PID information was updated
based on the write data ROS2 control was sending to the arduino

Additionally, the arduino had a set of header files, driver files. Each header file associated
with one node ros was being referenced in the XACRO files extended by URDF files.

Figure 3 – Raspberry Pi 4 Pin Out

Page 6 of 24

Figure 4 –Motor Driver L298N Pinout

Figure 5 – Arduino Nano PinOut

Page 7 of 24

Figure 6 – 5V Voltage Regulator PinOut

3) Camera:
In order to implement a fetch function, it is necessary to add a camera module that helps

identify the object. A basic USB camera was chosen as it was able to plug directly into the
raspberry pi allowing for easy interfacing. The camera comes with a mounting hole making it
ideal and easy to mount to the front of the robot. It was designed to be low on the chassis since it
was not being used for facial recognition, and provided a clear picture of the ground and any
object in the front of the robot. Implementation of the camera would allow us to see the image in
the ROS program and utilizing openCV we could add filters that would allow the program to
specifically trace the desired object.

B. Chassis Design
1) Body:

In order to make the chassis compact, owing to the size of a chameleon, we decided to
mount the components on multiple levels. This optimizes space. The lowermost level mounts the
drive assembly of the robot. The drive motion is achieved with the help of two motors. The
wheel motor mounts are located about a three quarters distance from the front of the chassis
baseplate. The other points of contact with the ground are the two castor wheels, both mounted at
the front of the baseplate. The other major components mounted on the lower level are the rack
and pinion mechanism for the claw (tongue) and the tail. Since the base needed to be stiff enough
we went with a 0.25 inch thick acrylic plate.

Page 8 of 24

Figure 7 – Base level with drive train, tongue and tail mechanisms

The Arduino and motor drivers that power the wheels are mounted on an intermediate
level, just above the motors. We have standoffs and bolts to connect the base plate and the
Arduino mounting intermediate level.

Page 9 of 24

Figure 8 – Intermediate Level for Arduino and Motor driver mounting

The second level is mounted to the lower level with standoffs and bolts. The second level
has mountings and slots for the camera, the raspberry pi and the battery. There are slots for
passing wires and future mounting points The LiDAR is mounted on the third and topmost level.
We placed the LiDAR high enough such that there are no components of the bot that restrict its
field of view. Since the LiDAR has a horizontal plane as its field of view we made sure no
components reached that level. The intermediate level, second level and the topmost level were
all 0.125 inch thick acrylic sheets. Almost all components of the structure and mounts were
either laser cut acrylic sheets or 3D printed.

Page 10 of 24

Figure 9 – Second and third level

The full chassis is depicted in figures 10a and 10b, within these photos, the clearance and
integration of all of our systems on a physical scale is showcased. The overall chassis was
relatively pretty compact and was designed for tight clearances to allow for a more realistic look
of a chameleon body. Additional aesthetics features were designed to attach to the chassis but
with difficulties of integration, it was decided to be left out to focus on the functionality of the
design.

Page 11 of 24

Figure 10 (a) – Chassis model with all components mounted

Page 12 of 24

Figure 10 (b) – Chassis with all components mounted

2) Tongue and Tail:
We designed our chameleon bot to have tongue and tail functionalities. The forward

motion of the rack depicts the chameleon launching the tongue and the claw clamping onto
objects depicts the chameleon catching prey with the tongue. There are guides mounted to the
lower level that ensure linear motion of the rack. The pinion and the claw motion are both
powered by separate servos. We have the spiraling tail of the chameleon mounted at the rear of
the base level. A string connects the rear of the rack with the tail. The forward motion of the rack
causes the tail to spiral up and the rearward motion causes the tail to spiral back down.

Page 13 of 24

Figure 11 – Tongue (claw)

Figure 12 – Tail

Page 14 of 24

C. Robot Operating System (ROS)
To enable integration of advanced robot algorithms, we utilized the Robot Operating

System (ROS). Specifically we used ROS2 Humble with the Ubuntu 22.04 OS in order to
accommodate the drivers our sensors required. ROS is a set of open source software libraries
providing functions for everything from low level hardware control to advanced robotic
localization and pathfinding algorithms and more. In a robotic system, ROS takes the form of a
network of nodes and topics, which are conceptually similar to walkie talkies (the nodes) that
receive and send messages on pre-programmed channels (the topics). By assembling this
network of nodes and topics in an intelligent way, a ROS user can code specific functions and
capabilities for their robot.

For testing of robot code, ROS is built to work with an associated simulation program
called Gazebo. The Unified Robot Description Format (URDF) includes libraries and plugins
that allow roboticists to imitate the values of a robot's sensors in a simulated environment and
pass those values to the functional robot code. This allows for rapid and accurate simulation of
robot behavior in a virtual environment where crashes and dangerous behavior have little
consequence, and improves the safety and speed with which the real robot can be developed.

In order to achieve our EAP goals of intelligently navigating a space and playing fetch,
we wanted to run a SLAM algorithm to create a map and accurately determine the robot’s
position, a pathfinding algorithm to select a route through the map without crashing into
obstacles, and computer vision algorithm to recognize and track the object we intended to fetch.
This design means we have a pathfinding system, fetch system, and teleoperation system that are
each sending different command velocities to the differential drive controller. In order to handle
these conflicting commands, we used a node called twist_mux to prioritize the command
velocities. Below is a simplified version of the ROS node graph to illustrate our program
architecture (Figure 13).

Page 15 of 24

Figure 13 – Simplified ROS Node Diagram
1) ROS Lidar

The ROS system integrates with the RPLidar through the RPLidar Driver node as shown
in Figure 13 when operating onboard the real robot. In the simulation, a simulated lidar built with
Gazebo-provided sensor types and plugins takes the place of the RPLidar and lidar driver node.
Using gazebo tags under the lidar.xacro description file we are able to construct a ray sensor that
samples distance in 360 degrees at a 10hz update rate. This distance data is then published as a
sensor_msgs/LaserScan message on the /scan output topic, imitating the output of the lidar driver
node it replaces. This allows the remaining ROS system which subscribes to the /scan topic to
function as it would if the RPLidar and lidar driver node were still running. The slam_toolbox is
the node through which the ROS system listens to and makes use of the lidar data, producing a
map of the robot’s surroundings and an updated estimate of the robot’s position within the map to
correct the error inherent in the robot odometry.

Page 16 of 24

Figure 14 – Visualization of Simulated Lidar in Gazebo

2) ROS Camera
With Gazebo and Rviz2 you are able to simulate a camera in the ROS environment. This

allows us to test the object tracking functionality of the robot with a simulated robot and object.
After implementing a camera module in Gazebo, linking in Rviz2 displays the camera image that
is being posted by the node. Running an image tacking filter [3] program allows us to adjust
multiple sliders that affect the camera's min and max values for the view box, hue, saturation,
and brightness. In order to determine the correct values to use, a spectrum plane was imposed
behind the object in gazebo. This allowed us to see the right color needed during configuring the
parameters. This then allows us to record the filter parameters into a separate file that the
tracking launch file will utilize. Running a ball_tracking topic, we were able to implement
multiple nodes that returned the X,Y,Z coordinates of the object that was in frame. These values
provided us with real time data of where the object was located with respect to the center of the
image frame.

With the ball tracking filters set, and the ball coordinates known, another node can be ran
that will tell the robot to follow the object. This program directs the robot to scan the area till it
can find the predetermined object. Once the object is in the camera view, it will begin driving
towards it until the object has reached a predetermined length away.

Page 17 of 24

Figure 15 – Camera view in Gazebo

Page 18 of 24

Figure 16 – Camera filtering of the object in Rviz2

Page 19 of 24

Figure 17 – Object tracking coordinate breakdown

VI. Budget Breakdown
The material listed below highlights all components of the EAP robot that was used to

create the finished product. This bill of materials includes components such as the Raspberry Pi 4
and lidar that were provided in class. Some items were also supplied by team members who had
them already in their possession and were not needed to be purchased. All items supplied to us
via class or teammate are marked with an “*”. As broken down in our budget table, our team
allowance of $250 was met with a total of $177.84 being spent outside of the provided materials.

Type Quantity Price Total

Raspberry Pi 4* 1 $35.00 $35.00

Arduino Nano 1 $20.00 $20.00

Slamtec RPLIDAR
A1M8*

1 $99.00 $99.00

Polulu Motors*&
L-Brackets

2 $17.78 $35.56

Hi-Tech Servo 2 $13.49 $26.98

Page 20 of 24

Motors

Aluminum Wheels* 2 $7.50 $15.00

Webcam* 1 $50.00 $50.00

LiPo Battery* 1 $0.00 $0.00

Motor Driver 1 $5.42 $5.42

5V Regulator 1 $4.50 $4.50

Casters 2 $1.88 $3.76

Wires 100 $0.00 $0.00

Metric M3 Screws
and bolts

1 $10.00 $10.00

Acrylic Plates ⅛’’x12’’x12’’
¼’’x12’’x12’’

$12.99 $26.00

3D Printed Parts 6 $0.00 $0.00

Total (w/ Provided
Parts)

$326.84

Total (w/o Provided
Parts)

$177.84

VII. Summary and Lessons Learned
Understanding Software/Hardware Compatibility

Early in this project, the most troublesome challenge was learning all the various ROS
systems and hardware systems we need and which versions of each do and do not function with
each other properly. For instance, the RPLidar firmware version impacts which version of the
lidar driver node you can use, which is only compatible with certain versions of ROS, which are
only compatible with certain versions of Ubuntu, which run only on specific versions of the
Raspberry Pi. The robot systems are like a fragile stack of dominos which must be assembled in
a very specific way to stand up and if anything is wrong, the entire stack comes falling down.
When assembled correctly and with all the right dependencies in place, the system functions
robustly and reliably. But, as we learned, if anything is wrong– you have the wrong version of a
node, the wrong version of a specific piece of hardware– the entire thing comes crumbling down.

Page 21 of 24

This doesn’t mean you can’t get versions of our system working on new hardware and ROS
versions, but doing so necessitates a deep understanding of ROS and how to modify/create your
own ROS nodes, drivers, controllers, and hardware interfaces. These are skills nobody in our
group yet has, and so we had to spend a significant amount of time discovering which versions of
every system we needed in order for our systems to integrate properly. ROS is powerful and
exciting to learn, but the price of that power is a large entrance-fee in the form of the skills and
knowledge required just to get started.

Team Communication and Delegation
As a team we relied heavily on navigation, specifically ROS2 control to systematically

integrate servo actuators, object recognition, and object tracking. However, due to the
complexity of integrating SLAM and the issues of implementing transforms which correlate the
simulation positions of parts of our robot to a physical representation of our robot, we ran into
several runtime errors. The lessons learned from our errors led us to believe as a team that we
should’ve created tasks that did not depend on one overarching feature within our robot and
focus on the overall picture of the project which was to make a robot pet. A lot of the time spent
was tackling future parts of navigation. However, small features such as speech recognition and
physical aesthetics such as eyes and color changing would've helped us develop something that
would've been more fitting to the project. Overall, making independent features would've been a
better approach. Additionally, this would help delegate tasks to team members.

Furthermore, collaboration with other teams would have helped progress the software of
our robot as well as inspiration. In contrast, due to the overall complexity of the integration of
the RPLidar, there weren't many other teams to collaborate with which made it difficult.
Regardless of this, we were able to produce a great navigation system despite having areas to
improve on and are extremely proud with what was produced at the end. Taking things piece by
piece was a big focus but the process probably could have benefited from collaborating with
other teams.

Page 22 of 24

References
[1] Reamon, D. (2024). Project Draft - DOG or EAP.pdf. MCEN 4228-5228 Files.

https://canvas.colorado.edu/courses/100582/files/74016462?module_item_id=5295702

[2] Joshnewans. “GitHub - Joshnewans/Ball_Tracker: ROS 2 Ball Tracking Software.”
GitHub, github.com/joshnewans/ball_tracker.

[3]Joshnewans. “GitHub - Joshnewans/Articubot_One.” GitHub,
github.com/joshnewans/articubot_one.

Page 23 of 24

https://canvas.colorado.edu/courses/100582/files/74016462?module_item_id=5295702
http://github.com/joshnewans/ball_tracker
http://github.com/joshnewans/articubot_one

Appendix:
Link to Robopet ROS Package
Link to RPLidar Driver Package
Link to Hardware Interface
Link to Arduino Motor Controller Program
Link to Encoder Motor Datasheet

Figure 18 – ROS RQT Graph for Simulation

Figure 19 – ROS RQT Graph for Real Robot

Note – Apologies for the incomprehensibility of the RQT graphs. This is why we included a
simplified node graph. We hope by zooming in or exporting the images these graphs may be
readable.

Page 24 of 24

https://github.com/Whitw-pers/robopet_one
https://github.com/Slamtec/rplidar_ros?tab=readme-ov-file
https://github.com/joshnewans/diffdrive_arduino
https://github.com/joshnewans/ros_arduino_bridge
https://www.pololu.com/product/4755

